

ANTIBIOTIC PHARMACOKINETICS AND PHARMACODYNAMICS

Basic concepts

WHAT IS PHARMACOKINETICS?

Refers to how antibiotics enter the body, where they go once they are "inside," and how they get out.

Can be described as absorption, distribution, and metabolism/excretion ("ADME").

So, Pharmacokinetics means what the body does with the drug.

9

KINETIC = MOVING

PK

DISTRIBUTION

- lipid solubility
- blood flow
- protein binding
- regional blood flow

METABOLISM

- linear pharmcokinetics
- once enzymes saturated small dose increase causes disproportionate increased serum levels

ABSORPTION

- Bioavailability
- Drug/food interactions
- GI conditions
- first /second pass metabolism.

EXCRETION

- renal clearance
- non-renal clearance

2

- biliary
- intestinal

IMPORTANCE OF PHARMACOKINETICS

The pharmacokinetics of antibiotics are **key to the effectiveness** of the drugs in clinical practice There is no benefit if an antibiotic that is **great at killing bugs** if it never gets to the site of the infection at a high enough concentration to work.

HOW PK PARAMETERS ARE STUDIED?

PK studies evaluate drug absorption, distribution, metabolism and excretion from the body.

These parameters are usually measured by studying the achievable drug levels in blood and other body fluids (eg, CSF) in healthy volunteers.

Most antimicrobial agents are protein-bound, ranging anywhere from 30% to 95% depending on the agent.

While PK can be measured as total drug concentration, it is only the unbound (free) drug that has activity against bacterial pathogens.

Therefore, unbound (free) drug concentrations are generally used in assessment of PK for setting breakpoints or determining a dose.

THREE PHARMACOKINETIC PARAMETERS

That are most important for evaluating antibiotic efficacy are the

- Peak serum level (Cmax)
- The trough level (Cmin)
- The Area Under Curve (AUC).

While these parameters quantify the serum level time course, they do not describe the killing activity of an antibiotic. Which are described by Pharmacodynamics

Pharmacokinetics

WHAT IS PHARMACODYNAMICS?

PD, studies the relationship between unbound drug concentration over time and the resulting antimicrobial effect on the organism.

PD answers the question "What does the drug do to the organism(and host)?"

Ideally, the effect of an antimicrobial agent is to eradicate the infecting organism without adverse effects to the patient.

Figure 1: Interplay between Pharmacokinetics and Pharmacodynamics of Antimicrobial Agents

PK-PD

Drug

and

Pharmacokinetics

What does the body do to the drug?

- Absorption •
- Distribution
- Metabolism
- Excretion

Pharmacodynamics

What does the drug do to the organisms? concentrations

- -Effect = antimicrobial activity effect
 - Desirable
 - ✓ inhibition and killing
 - Undesirable
 - ⊗ adverse effects

MINIMUM INHIBITORY CONCENTRATION (MIC)

The MIC is the lowest concentration of an antibiotic that completely inhibits the growth of a microorganism in vitro.

Developed in the 1950's to forecast response to therapy

While the MIC is a good indicator of the potency of an antibiotic, it indicates nothing about the time course of antimicrobial activity.

MIC...

Therefore, the unfortunate truth is that an MIC on its own is a relatively blunt instrument tasked with addressing an extremely complex problem.

MIC values are limited in that they measure antibacterial activity over fixed concentrations of drug. Such a metric does not account for the time course of antibacterial activity as a function of fluctuating concentrations of drug in patients.

PK-PD INTEGRATION

• Integrating the PK parameters with the MIC gives us three PK/PD parameters which quantify the activity of an antibiotic:

- the Peak/MIC ratio
- the %T>MIC
- the 24h-AUC/MIC ratio

Pharmacokinetic/Pharmacodynamic Predictors of Efficacy

UNDERSTANDING TERMS OF PK/PD

- The Peak/MIC ratio is simply the Cmax divided by the MIC.
- The %T>MIC (time above MIC) is the percentage of a dosage interval in which the serum level exceeds the MIC.
- The 24h-AUC/MIC ratio is determined by dividing the 24-hour-AUC by the MIC.

ABBREVIATIONS

- %T > MIC, length of time the concentration of drug in the patient's serum remains above the MIC
- CMAX, highest (maximum)concentration of drug attained during the dosing interval
- AUC, area under the curve calculated by examining the length of time the drug concentration remains above the MIC together with the overall drug concentration achieved over this time frame.
- The broken horizontal MIC line refers to the susceptible breakpoint for the antimicrobial-organism combination.

16

AREA UNDER THE CURVE (AUC)

- The AUC is a measure of total systemic exposure to the drug, which expresses how much drug reaches a person's bloodstream in a given period of time after a dose is given.
- The information is useful for determining dosing and for identifying potential drug interactions.
- Units : µg/ml x hrs
- It helps to evaluate and compare bioavailability profiles between medicines.

AREA UNDER THE CURVE (AUC)...

- Typically, the area is calculated starting from the time the medicine is administered until the time when the concentration in plasma is insignificant.
 - $\mathbf{C}_{\max}\!\!:$ The maximum concentration or maximum systemic exposure
 - T_{\max} : The time of maximum concentration or maximum systemic exposure
 - $t_{1\!/\!2}$ or half-life: The time required to reduce the plasma concentration to one-half of its initial value

IMPORTANCE OF PK/PD

PK-PD target threshold helps to ...

- Select a dose with clinical response rates consistent with regulatory approval
- Select appropriate susceptibility breakpoint
- > Prevent resistance amplification
- > Optimize speed of response

FURTHER USE OF PK/PD

PK/PD is also critical in determining breakpoints that are used to categorize the MIC of an isolate as "Susceptible," "Intermediate," "Susceptible-Dose-Dependent", "Non-Susceptible," or "Resistant." Done by Clinical and Laboratory Standards Institute (CLSI)

ANTIMICROBIAL PATTERNS

- The three Pharmacodynamics properties of antibiotics that best describe killing activity are -
- 1. Time-dependent- The rate of killing is determined by the length of time necessary to kill.
- 2. Concentration-dependent- the effect of increasing concentrations .
- 3. **Persistent effects- Post-Antibiotic Effect** -PAE is the persistent suppression of bacterial growth following antibiotic exposure.

Type I antibiotics - Time-dependent

Aminoglycosides, fluoroquinolones

The ideal dosing regimen would maximize **concentration**, because the higher the concentration, the more extensive and the faster is the degree of killing.

- Therefore, the **Peak/MIC** ratio is the important **predictors** of antibiotic efficacy.
- For aminoglycosides, it is best to have a Peak/MIC ratio of **at least 8-10** to prevent resistance.

GENTAMICIN IS PROTOTYPE OF TYPE -1

- Exhibit maximum activity with high concentrations and long PAE.
- Substantial PAE
- Immunomodulatory action (leucocyte enhancement)
- Adaptive resistance (ability to revert to susceptible)
- Nephrotoxicity: reversible; drug binding to brush border of renal cells.
- Ototoxicity: Irreversible; free radicals damage vestibular and cochlear cells.
- PK/PD parameter :Cmax /MIC ratio should be 8-10 for MIC $\leq 1 ug/ml$
- Goal trough levels 0.5-1ug/ml before redosing

Type II antibiotics- Concentration-dependent

Beta-lactams, Clindamycin, Erythromycin, and Linezolid

- The ideal dosing regimen for these antibiotics maximizes the **duration** of exposure.
- The T>MIC is the parameter that best correlates with efficacy.
- For beta-lactams and erythromycin, maximum killing is seen when the time above MIC is at least 70% of the dosing interval.

II – Time Dependent with No PAE

- Beta Lactams / Monobactam (Aztreonam) / Erythromycin
- PK/PD parameter for Best Clinical Efficacy: percentage of Time when concentration stays above the MIC (T%>MIC). Assuming MIC in "S"
 - Cepahlosporins (Slow killing): at least 60 70%
 - Penicillin: at least 50%
 - Carbapenems: at least 40%

Continuous and Prolonged Intravenous β -Lactam Dosing: Implications for the Clinical Laboratory

Mordechai Grupper, Joseph L. Kuti, David P. Nicolau

Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA

Abollo Imperial

Fig. 2.

Time above the minimum inhibitory concentration (MIC) for intermittent, extended and continuous infusion of time-dependent drugs. Extended or continuous infusion of time-dependent drugs can improve the percentage of the dosing interval above the MIC ($T_{>MIC}$), particularly when treating infections with elevated MICs. Intermittent infusion (solid line), extended infusion (dashed line) and continuous infusion (dotted line) are compared with the time that each dosing regimen is below the MIC, highlighted by the grey area. Curves were generated using the same total daily dose and consistent pharmacokinetic parameters for each regimen.

TYPE III ANTIBIOTICS

- Vancomycin, Tetracyclines, Azithromycin
- Have mixed properties, they have time-dependent killing and moderate persistent effects.
- The ideal dosing regimen for these antibiotics maximizes the **amount** of drug received.
- Therefore, the 24h-AUC/MIC ratio is the parameter that correlates with efficacy.
- For vancomycin, a 24h-AUC/MIC ratio of at least 400 is necessary for MRSA.

28

III – Time Dependent with Significant PAE

- Total Drug administered matters: PK Parameter is the AUC
- The Defined PK/PD parameter in such drugs is AUC₀₋₂₄/MIC ratio
- Total amount of drug exposed in 24 hours / MIC. Assuming MIC in "S"

VANCOMYCIN: Classical Example

- Maintain AUC₀₋₂₄/MIC > 400 successful clinical outcome
- HOW?
- Loading Dose in Children for serious MRSA Infections: 25 mg/kg stat
- Maintenance dose: 15 20 mg/kg/dose q6hrly
- Total Daily Dose NOT LESS THAN 60mg/kg/day
- WHEN VANCOMYCIN M.I.C. IS ≤1 μg/mL
- Maintain trough levels @ 15-20 $\mu g/mL$ both for adults and children

Vancomycin Dosing and Frequency Depends Upon Creatinine Clearance

D. VANCOMYCIN*

Empiric Dosage^{b.c} (mg/kg/dose) by Gestational Age and Serum Creatinine

≤28 wk			>28 wk			
Serum Creatinine	Dose	Frequency	Serum Creatinine	Dose	Frequency	
<0.5	15	q12h	<0.7	15	q12h	
0.5-0.7	20	q24h	0.7-0.9	20	q24h	
0.8-1	15	q24h	1-1.2	15	q24h	
1.1-1.4	10	q24h	1.3-1.6	10	q24h	
>1.4	15	q48h	>1.6	15	a48h	

^a Serum creatinine concentrations normally fluctuate and are partly influenced by transplacental maternal creatinine in the first week of age. Cautious use of creatininebased dosing strategy with frequent reassessment of renal function and vancomycin serum concentrations are recommended in neonates ≤7 days old.

^b Up through 60 days of age. If >60 days of age, 45–60 mg/kg/day div q8h (see Chapter 11).

^c Desired serum concentrations vary by pathogen, site of infection, degree of illness; for MRSA and MSSA, aim for a target based on the ratio of the area under the curveminimum inhibitory concentration of ~400 mg/L × hr, which will require peak and trough measurement. For coagulase-negative staphylococci and *Enterococcus*, troughs of 5–10 mg/L are likely to be effective. Pattern of activity of different antibacterial drugs and their associated pharmacokinetic/pharmacodynamic (PK/PD) targets ^a

Mechanism of bactericidal effects based on in vitro data	Antibiotic class	PK/PD parameter(s) associated with efficacy	Goal of dosing regimen		
Concentration- dependent killing with moderate-to-persistent bactericidal effects	Aminoglycosides Fluoroquinolones Metronidazole Daptomycin Ketolides	C _{max} /MIC AUC ₀₋₂₄ /MIC	Maximise concentration: increase dose		
CONC DEP / GOOD PAE					
Time-dependent killing with minimal-to-no persistent bactericidal effects	β-Lactams: Penicillins Cephalosporins Carbapenems Aztreonam Erythromycin	T _{>MIC}	Maximise the duration of exposure: increase duration of infusion or frequency of administration		
TIME DEP / POOR PAE					
Time-dependent killing with moderate-to- prolonged persistent bactericidal effects	Macrolides Tetracyclines	AUC ₀₋₂₄ /MIC	Maximise drug exposure: increase dose, frequency of administration or duration of infusion		
TIME DEP / GOOD PAE	Clindamycin Linezolid b				

POST ANTIBIOTIC EFFECT

- Protein Bound Drug Getting released slowly
- Damage caused to genetic machinery

 $\mathbf{31}$

Some Basic Fundamentals to Remember

perial

- Altering the **DOSE** primarily affects **Cmax: MIC** and **AUC: MIC**
- Altering the DOSING INTERVAL / DURATION affects AUC: MIC and %T>MIC
- For time dependent agents, the rate of bacterial killing is maximised at a low multiple of the MIC and achieving higher concentrations does not result in greater killing.
- For concentration dependent agents an increase in Vd will reduce the ability for a standard dose to achieve a high Cmax.

"Time" refers to the dosing interval. "Concentration" refers to the amount of drug attained over time in a patient's blood following administration of the drug. A dose of antimicrobial is initially administered **at time 0**. The concentration increases, then decreases and at a certain time, a subsequent dose may be given.

AMINOGLYCOSIDE PHARMACODYNAMICS IN VIVO

Initial serum peak level	Died	Survived
< 5mcg/ml	21%	79%
>= 5mcg/ml	2%	98%

Moore et al, J Infect Dis 149: 443, 1984

Figure 3–1 Pharmacokinetic Phases and Parameters

How can we alter Dose / Duration / Frequency of Antibiotic?

FIRST UNDERSTAND THE BASIC P.K. & P.D.

Pattern of activity of different antibacterial drugs and their associated pharmacokinetic/pharmacodynamic (PK/PD) targets ^a

Mechanism of bactericidal effects based on in vitro data	Antibiotic class	PK/PD parameter(s) associated with efficacy	Goal of dosing regimen		
Concentration- dependent killing with moderate-to-persistent bactericidal effects	Aminoglycosides Fluoroquinolones Metronidazole Daptomycin Ketolides	C _{max} /MIC AUC ₀₋₂₄ /MIC	Maximise concentration: increase dose		
CONC DEP / GOOD PAE					
Time-dependent killing with minimal-to-no persistent bactericidal effects	β-Lactams: Penicillins Cephalosporins Carbapenems Aztreonam Erythromycin	T _{>MIC}	Maximise the duration of exposure: increase duration of infusion or frequency of administration		
TIME DEP / POOR PAE					
Time-dependent killing with moderate-to- prolonged persistent bactericidal effects	Macrolides Tetracyclines	AUC ₀₋₂₄ /MIC	Maximise drug exposure: increase dose, frequency of administration or duration of infusion		
TIME DEP / GOOD PAE	Clindamycin Linezolid b				

POST ANTIBIOTIC EFFECT

- Protein Bound Drug Getting released slowly
- Damage caused to genetic machinery

38

Some Basic Fundamentals to Remember

- Hydrophilic agents (beta-lactams, glycopeptides, aminoglycosides)
 - Cannot passively diffuse through the cytoplasmic membrane
 - Inactive against intracellular organisms
 - They have a limited extracellular distribution
 - Excreted renally.
- Lipophilic agents (macrolides, tetracyclines, fluoroquinolones)
 - Freely cross membranes
 - Have activity against intracellular organisms
 - Wide distribution and intracellular accumulation
 - Hepatic metabolism

Vd - Volume of distribution; CL - clearance

CLASS	EXAMPLE	EFFECT	DISTRIBUTION	EXCRETION	PRIMARY PD PARAMETER	PAE	том
Beta Lactams	Amoxicillin	Bactericidal	Low protein binding and hydrophilic	Renal	T>MIC	Short or no PAE	Not routine
Glycopeptides	Vancomycin	Bactericidal	Hydrophilic	Renal	AUC:MIC	Short PAE	Recommended for all patients
Aminoglycosides	Gentamicin	Bactericidal	Hydrophilic	Renal	C _{MAX} :MIC & AUC:MIC	Significant	Recommended for all patients
Fluoroquinolones	Ciprofloxacin	Bactericidal	Lipophilic wide distribution	Renal & hepatobiliary	C _{MAX} :MIC & AUC:MIC	Significant	Not recommended
Macrolides	Azithromycin	Bacteriosta tic	Lipophilic wide distribution	Hepatobiliary	T>MIC & AUC:MIC	Significant	Not recommended
Tetracyclines	Doxycyline	Bacteriosta tic	Lipophilic wide distribution	Hepatobiliary	AUC:MIC	Significant	Not recommended
Lincosamide	Clindamycin	Bacteriosta tic	Lipophilic wide distribution	Hepatobiliary	AUC:MIC	Demonstrated in S.aureus	Not recommended
Oxazolidinone	Linezolid	Bacteriosta tic	Lipophilic wide distribution	Renal	AUC:MIC	Short	CF, ESRF, neonates, burns, MIC >2mg/l interacting meds
Lipopeptide	Daptomycin	Bactericidal	Highly protein bound hydrophilic	Renal	C _{MAX} :MIC & AUC:MIC	Significant	dosing >6mg/ kg, renal impairm/ent
Polymyxin	Colistin (colistimethate sodium)	Bactericidal	Hydrophilic and lipophilic properties	Renal	AUC:MIC	Significant	Recommended for all patients

erial

WHEN IS PK / PD CLINICALLY RELEVANT?

	Potential altered PK/PD	Example		
Obesity	Reduced tissue penetration	Quinolones		
	Shorter mean T _{1/2} *	Vancomycin		
	Increased Vd**	Aminoglycosides		
	Increased clearance	Aminoglycosides		
Renal insufficiency	Decreased clearance	Aminoglycosides		
Neonates	Decreased clearance	Aminoglycosides		
		Glycopeptides		
Children	Increased clearance	Aminoglycosides		
Critical illness	Increased Vd	Aminoglycosides		
		Beta lactams		
		Glycopeptides		
		Colistin		
	Increased clearance	Beta lactams		
Pregnancy	Increased clearance	Aminoglycosides		
		Cefuroxime		
	Increased Vd	Hydrophilic agents		
Cystic fibrosis	Increased clearance	Aminoglycosides		

*T_{1/2} half life, **Vd volume of distribution)

Should You Know the Elimination Route?

HEPATOBILIARY			RENAL			
Chloramphenicol	Isoniazid	Most Fluoroquinolones		Amantadine		
Moxifloxacin	Rifampin		Aminoglycosides		Rimantadine	
Tigecycline	Pyrazinamide		Carbapenems		Acyclovir	
Doxycycline	Ethambutol		Nitrofurantoin		Valacyclovir	
Minocycline			Tetracycline		Famciclovir	
Cefoperazone	Ketoconazole		Aztreonam		Valganiciclovir	
Ceftriaxone	Voriconazole		Poly B, Colistin		Oseltamivir	
Macrolides	Posaconazole		Most Beta Lactams		Zanamivir	
Nafcillin	Itraconazole		Vancomycin		Peramavir	
Clindamycin	Caspofungin		Oxacillin			
Quinu/Dalfo	Micafungin		Daptomycin			
Linezolid	Anidulafungin		Telavancin		Fluconazole	
Metronidazole			Ceftaroline		Amphotericin B	

43

Should You Know About the Bioavailability?

Bioavailability	Antimicrobials					
	Amoxicillin	Tmp-Smx	Linezolid			
	Cepahlexin	Doxycycline	Fluconazole			
Excellent	Cefprozil	Minocycline	Voriconazole			
(>90%)	Cefadroxil	Chloramphenicol	Rifampin			
	Clindamycin	Metronidazole	Isoniazid			
	Quinolones	Cycloserine	Pyrazinamide			
Good (60-90%)	Cefixime	Valacyclovir	Ethambutol			
	Cefpodoxime	Famciclovir	5-Flucytosine			
	Ceftibuten	Valganiciclovir	Posaconazole			
	Cefuroxime	Macrolides	Itraconazole			
	Cefaclor	Nitrofurantoin	Nitazoxanide (w food)			
Poor (<60%)	Vancomycin	Cefdinir	Nitazoxanide (w/o food)			
	Acyclovir	Cefditoren	Fosfomycin			

44

PATHOPHYSIOLOGICAL EFFECTS ON PK

CL – creatinine clearance Vd – volume of distribution RRT – renal replacement therapy ECMO – extracorporeal membrane oxygenation ?CL – possible increased clearance

FACTORS IN ANTIBIOTIC DOSING

Renal Insufficiency:

- Most antibiotics cleared by kidneys have wide toxic therapeutic ratio
- Dosing regimens frequently based on formula derived estimates of CrCl

CrCL: 40-60 mL/min:

- **↓** dose by 50%
- USUAL dosing interval

CrCL: 10-40 mL/min:

- ↓dose by 50%
- DOUBLE dosing interval

Alternative: Use Hepatically eliminated Abx in Usual Dose

Hepatic Insufficiency: \downarrow **dose by 50%** in clinically severe liver dis.

Alternative: Use Renal eliminated Abx in Usual Dose

BECOME AN Antibiotic guardian

